Fractals & Chaos Lesson Recap for 12/14

We did some more work with Complex Paint today, in the hopes of “solving” Az+B. To make this easier, we derived the “Polar-Linear” form of this formula, where instead of referring to A in rectangular coordinates, we refer to it in a modified form of polar coordinates, where we use R and T, the fraction of a full turn that the angle of polar form refers to. This allowed us to make the following observations:

  • B has no impact on the type of fixed point we get, just its location
  • If R < 1, the fixed point is an attractor
  • If R = 1, the fixed point is neutral
  • If R > 1, the fixed point is a repeller
  • The denominator of T (in lowest terms) tells us how many spokes we get in a pattern.

The only thing we haven’t figured out yet is where spirals come from, and why spirals turn into spokes when we use values of R closer to 1. We’ll explore that on Monday.

Questions? Comments?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.